Электроника отрасль науки и техники охватывающая проблемы

Электроника отрасль науки и техники охватывающая проблемы

Электроника – наука, изучающая взаимодействие с электромагнитными полями заряженных частиц, а также разрабатывающая методы разработки электронных устройств и приборов. Электроника вносит в жизнь людей изменения более существенные, нежели какая-либо другая техническая отрасль. Радиоприемники, аудио-видео техника, телевизоры, компьютеры – вся эта электронная техника увидела свет за счет развития электроники.

Электронные устройства и различные приборы, создаваемые на основе электроники, широко применяются в измерительной и вычислительной технике, в системах автоматики и связи, во множестве других полезных устройств.

Электроника – это отрасль современной науки и техники, которая сегодня развивается особенно бурно. Она помогает изучать физическую природу и активизировать практическое использование разнообразных электронных устройств и приборов. Успех электроники в значительной мере стимулировало развитие радиотехники.

Сегодня радиоэлектроника является системным комплексом, в который объединены сферы науки и техники, сопряженные с необходимостью выработки инновационных решений проблем приема/передачи и преобразования информации посредством электромагнитных волн и колебаний в оптическом и радиодиапазоне частот.

Основными компонентами радиотехнических устройств являются электронные приборы, определяющие важнейшие параметры и характеристики работы радиоаппаратуры.

В то же время в процессе поиска оптимальных решений многих проблем радиотехники были разработаны новые и усовершенствованы действующие электронные приборы, которые широко используются в таких сферах, как телевидение и радиосвязь, звукозапись и звуковоспроизведение, радионавигация и радиолокация, радиоизмерения и множестве других областей радиотехники.

Нынешний этап в развитии электронной техники характеризует все более активное проникновение электроники во все области деятельности человечества.

Инновации в сфере электроники обуславливают успехи в решении сложнейших научно–прикладных технических задач, повышении эффективности научных разработок, создании принципиально новых видов оборудования, машин и систем управления, получении имеющих уникальные свойства материалов, совершенствовании процесса получения и обработки информационных данных. Охватывая широчайший круг проблем научно–технического и производственного характера, электроника базируется на достижениях во множестве областей знаний.

При этом электроника, во-первых, осуществляет постановку задач перед другими сферами науками и производства, обуславливая их дальнейшее поступательное развитие, а во-вторых, обеспечивает их множеством качественно новых технических средств и методов исследования.

Сегодня практически в каждой квартире или доме можно видеть различную компьютерную и электронно-вычислительную технику.

Наша повседневная жизнь становится намного более насыщенной и динамичной именно благодаря электронике, развитие и применение которой открывает невиданные перспективы в реализации поставленных целей.

Сейчас уже никого не удивить СВЧ-печью, мощным пылесосом, реагирующими на голос приборами освещения, сигнализации и оповещения, широкоэкранными LCD и плазменными телевизионными панелями, многофункциональной бытовой техникой, объединяющей в себе множество устройств самого различного назначения.

Все эти достижения в сфере электроники – достояние человечества, которое использует их с пользой для себя и планеты.

Разработка и применение инновационных технологий позволили людям достичь принципиально новых рубежей в развитии научно-технического прогресса. Электроника – залог процветания, как в настоящее время, так и в будущем. Пройдет совсем немного времени, и на службу обществу придут такие новинки электронной техники, как вычислительные устройства нового поколения, «умная» мультимедийная техника, электромобили и многое другое.

Электроника как фактор ускорения научно-технического прогресса. История развития электроники. Силовая и информационная электроника

Электроника –научно-техническое направление охватывающее проблемы исследования, конструирования, изготовления и применения электронных приборов и устройств, способствующее разработке эффективных технологий и систем управления, получению материалов с уникальными свойствами, совершенствованию процесса сбора, обработки и хранения информации.

Электроника как область науки делится на 2 части:

Силовая электроника

(Преобразование электрической энергии в промышленности, на транспорте…)

Информационная электроника

(Преобразование информационных сигналов)

Электроника прочно вошла в самые различные сферы нашей деятельности; область применения различных электронных устройств про­сто огромна — от наручных электронных часов до телевизора и радиоприемника; от электронного зажигания в автомобилях до сложнейших автоматических технологических линий; от бытовых на­гревательных приборов (микроволновые печи) до сверхмощных компьютеров. С помощью специ­альных электронных устройств можно придать электродвигателям любые желаемые характеристики, обеспечить наиболее благоприятное протекание переходных процессов, преобразовать электриче­скую энергию из одного вида в другой и решать целый ряд таких задач, которые другими способами вообще не решаются, либо решаются со значительно большими затратами.

Читайте также:  Каркасный или каркасно щитовой дом что лучше

История развития электроники восходит к концу XIX — началу XX века. Первоначально она раз­вивалась для удовлетворения потребностей бурно развивающихся средств связи — для генерирова­ния, усиления и преобразования электрических сигналов. Однако подлинный расцвет электроники начался после изобретения в 1948 году полупроводникового прибора — транзистора, технические характеристики которого значительно превосходили характеристики электронных ламп, применяв­шихся в электронных устройствах первого поколения. Так, транзисторы имеют значительно более высокие массогабаритные показатели, практически неограниченный срок службы, высокую механи­ческую прочность, экономичность и ряд других достоинств.

Следующий этап повышения технического уровня элементной базы, а также завершенных из­делий электронной аппаратуры обусловлен переходом на интегральные микросхемы, что определи­ло дальнейшее развитие и совершенствование технологических способов и процессов, общих для всех полупроводниковых приборов. Интегральная технология оказала глубокое влияние на все этапы разработки, изготовления и эксплуатации электронной аппаратуры. Электроника стала основой элек­тронно-вычислительных машин, проникла в автоматические системы и устройства.

В электронике больших мощностей революционным моментом стало появление мощных по­лупроводниковых приборов: тиристоров, силовых диодов и транзисторов. На их основе стали разра­батываться разнообразные преобразовательные устройства для электромеханических систем и элек­троэнергетики. Развитие электроники бурными темпами продолжается и в настоящее время, что яв­ляется мощным стимулом для прогресса во многих областях науки и техники.

Связи атомов в молекулах

В атомных кристаллах соединение атомов в молекулы происходит по причине ковалентной (парно-электронной) связи двух валентных электронов принадлежащих двум различным атомам электроны, образующие ковалентные связи, отличаются друг от друга спинами (вращением вокруг своей оси) s=±1/2. Как только электроны образуют ковалентную связь, каждый из них принадлежит двум атомам одновременно. Ковалентная связь присуща в основном элементам средних групп таблицы Менделеева (C, Si, Ge, В, P, In, As, Se, Sn, Sb …).

Полупроводники

У полупроводников ширина запрещенной зоны ниже (не более 3Эв), поэтому часть ее электронов благодаря энергии теплового движения даже при комнатной температуре может преодолеть запрещенную зону и принять участие в электропроводности.

Проводники

В проводниках электроны в связи с малой шириной запрещенной зоны, сравнимой с длиной свободного пробега электрона, а иногда и отсутствием этой зоны, могут даже под действием слабых полей свободно переходить в зону проводимости, участвуя в направленном движении.

Примесная проводимость

В большинстве случаев приходится иметь дело с примесными полупроводниками, в кристаллической решетке которых имеются атомы посторонних элементов. В электронных полупроводниковых приборах используются именно примесные полупроводники.

Если в четырёх валентный полупроводник (Si) ввести пяти валентную примесь, например Сурьмы (Sb), то четыре валентных электрона примеси восстанавливают ковалентные связи с атомами полупроводников, а один электрон остается свободным. За счет этого концентрация свободных электронов будет превышать концентрацию дырок. Примесь за счет которой концентрация свободных электронов превышает концентрацию дырок донорная примесь. Полупроводники у которого полупроводники с электронным типом проводимости, n-типа. В полупроводнике n-типа электроны – основные носители заряда, а дырки -неосновные.

При введении трёх валентной примеси (In), её валентные электроны восстанавливают ковалентные связи, а четвёртая ковалентная связь оказывается невосстановленной, т.е. имеется вакансия. В результате концентрация электронов меньше концентрации дырок Примесь, при которой концентрация дырок больше чем концентрация электронов – акцепторная примесь, а полупроводник –полупроводник p-типа с дырочным типом проводимости.В полупроводнике р-типа дырки – основные носители заряда, а электроны – неосновные. Реальное количество примесей в полупроводнике

Образование электронно-дырочного перехода

Необходимо соединить полупроводники двух типов. Ввиду неравномерной концентрации свободных носителей заряда на границе раздела p и n полупроводника возникает диффузионный ток , стремящийся выровнять концентрацию носителей зарядов. За счет этого тока электроны из n области переходят в область p.

Читайте также:  Электромагнитные излучения в порядке убывания длин волн

Свободные электроны, отрываясь от атомов донорной примеси нарушают нейтральность его общего заряда и оставляют на своем месте положительные ионы донорной примеси, в свою очередь электроны, приходящие в p область рекомбинируют с дырками акцепторной примеси. При этом возникают нескомпенсированные заряды отрицательных ионов акцепторной примеси. Процесс обмена зарядами происходит в слоях близлежащих границе контакта полупроводников, при этом в области n типа близко к границе контакта будет образовываться слой из положительно заряженных ионов имеющих объемный положительный заряд. Для области p типа аналогично.

Образовавшееся внутреннее электрическое поле объемных зарядов вызовет встречный дрейфовый ток. Обмен зарядами происходит до тех пор, пока диффузионный и дрейфовый токи не уравняются. В образовавшейся области объемных зарядов отсутствуют свободные носители зарядов, поэтому слой в близи границы контакта обладает высоким сопротивлением. В ООЗ возникает внутреннее электрическое поле — тормозящее для основных носителей заряда, зато для неосновных носителей заряда поле будет ускоряющим и будет переносить их в область, где они станут основными, эта область называется p-n переходом. Ширина p-n перехода десятые доли микрометра. Распределение потенциала по ширине полупроводника – потенциальная диаграмма. Разность потенциалов, возникающая в p-n переходе – контактная разность потенциалов или потенциальный барьер (ПБ)

Потенциальная диаграмма

Для того, чтобы основной носитель заряда смог преодолеть переход, его энергия должна быть достаточной для преодоления ПБ. Величина ПБ зависит от соотношения концентрации основных или неосновных носителей заряда и определяется:

k- постоянная Больцмана,

Т – абсолютная температура тела полупроводника,

е – заряд электрона

Вывод: величина Uk зависит от уровня легирования полупроводника примесями и увеличивается с ростом легирования.

Поверхностный пробой

Распределение напряженности электрического поля может существенно изменить заряды имеющиеся на поверхности полупроводника, поверхностный заряд может привести к увеличению или уменьшения p-n перехода, в результате чего на поверхности полупроводника пробой p-n перехода может наступить при напряженности поля меньше той, которая необходима для возникновения пробоя внутри полупроводника. Большую роль при возникновении поверхностного пробоя играют диэлектрические свойства среды, которая граничит с поверхностью полупроводника. Для снятия вероятности поверхностного пробоя применяют специальные покрытия с высокими диэлектрическими свойствами.

По мощности

По конструкции

· для малой и средней мощности

1. плоскостные диоды

· для силовых диодов

УГО

Электроника как фактор ускорения научно-технического прогресса. История развития электроники. Силовая и информационная электроника

Электроника –научно-техническое направление охватывающее проблемы исследования, конструирования, изготовления и применения электронных приборов и устройств, способствующее разработке эффективных технологий и систем управления, получению материалов с уникальными свойствами, совершенствованию процесса сбора, обработки и хранения информации.

Электроника как область науки делится на 2 части:

Силовая электроника

(Преобразование электрической энергии в промышленности, на транспорте…)

Информационная электроника

(Преобразование информационных сигналов)

Электроника прочно вошла в самые различные сферы нашей деятельности; область применения различных электронных устройств про­сто огромна — от наручных электронных часов до телевизора и радиоприемника; от электронного зажигания в автомобилях до сложнейших автоматических технологических линий; от бытовых на­гревательных приборов (микроволновые печи) до сверхмощных компьютеров. С помощью специ­альных электронных устройств можно придать электродвигателям любые желаемые характеристики, обеспечить наиболее благоприятное протекание переходных процессов, преобразовать электриче­скую энергию из одного вида в другой и решать целый ряд таких задач, которые другими способами вообще не решаются, либо решаются со значительно большими затратами.

История развития электроники восходит к концу XIX — началу XX века. Первоначально она раз­вивалась для удовлетворения потребностей бурно развивающихся средств связи — для генерирова­ния, усиления и преобразования электрических сигналов. Однако подлинный расцвет электроники начался после изобретения в 1948 году полупроводникового прибора — транзистора, технические характеристики которого значительно превосходили характеристики электронных ламп, применяв­шихся в электронных устройствах первого поколения. Так, транзисторы имеют значительно более высокие массогабаритные показатели, практически неограниченный срок службы, высокую механи­ческую прочность, экономичность и ряд других достоинств.

Читайте также:  Юракс отзывы от тараканов

Следующий этап повышения технического уровня элементной базы, а также завершенных из­делий электронной аппаратуры обусловлен переходом на интегральные микросхемы, что определи­ло дальнейшее развитие и совершенствование технологических способов и процессов, общих для всех полупроводниковых приборов. Интегральная технология оказала глубокое влияние на все этапы разработки, изготовления и эксплуатации электронной аппаратуры. Электроника стала основой элек­тронно-вычислительных машин, проникла в автоматические системы и устройства.

В электронике больших мощностей революционным моментом стало появление мощных по­лупроводниковых приборов: тиристоров, силовых диодов и транзисторов. На их основе стали разра­батываться разнообразные преобразовательные устройства для электромеханических систем и элек­троэнергетики. Развитие электроники бурными темпами продолжается и в настоящее время, что яв­ляется мощным стимулом для прогресса во многих областях науки и техники.

Электротехника имеет множество разделов, самые важные из которых описаны ниже. Хотя инженеры работают каждый в своей области, но многие из них имеют дело с комбинацией из нескольких наук.

Электроэнергетика

Электроэнергетика — наука о выработке, передаче и потреблении электроэнергии, а также о разработке устройств для этих целей. К таким устройствам относят: трансформаторы, электрические генераторы, ТЭНы, электродвигатели, низковольтную аппаратуру и электронику для управления силовыми приводами. Многие государства мира имеют электрическую сеть, называемую электроэнергетической системой, которая соединяет множество генераторов с потребителями энергии. Потребители получают энергию из сети, не тратя ресурсы на выработку своей собственной энергии. Энергетики работают как над проектированием и обслуживанием сети, так и над энергетическими системами, присоединёнными к сети. Такие системы называются внутрисетевыми и могут как поставлять энергию в сеть, так и потреблять её. Энергетики работают также и над системами не присоединёнными к сети, называемыми внесетевыми, которые в некоторых случаях являются более предпочтительными, чем внутрисетевые системы. Имеется перспектива создания энергетических систем, контролируемых со спутника, имеющих обратную связь в реальном времени, что позволит избежать скачков напряжения и предотвратить нарушения энергоснабжения.

Системы автоматического управления

Задачами автоматических систем управления (и автоматизации в целом) является моделирование различных динамических систем и разработка систем управления, которые заставляют работать динамические системы нужным образом. Для создания таких устройств могут использоваться электрические схемы, процессоры цифровой обработки сигналов, микроконтроллеры и программируемые логические контроллеры. Системы управления имеют широкую область применения от систем, встраиваемых в энергетические установки (например, на коммерческих авиалайнерах), автоматов постоянной скорости (имеющихся во множестве современных автомобилей) и ЧПУ в станках до систем управления на базе промышленных ПК в автоматизации промышленного производства.

Инженеры часто используют обратную связь при проектировании систем управления. Например в автомобиле с автоматом постоянной скорости скорость транспортного средства постоянно отслеживается и данные передаются системе, которая соответственно регулирует выходную мощность двигателя. Если имеется стандартная система обратной связи, можно использовать теорию управления для определения того, как система должна реагировать на поступающую информацию.

Микроэлектроника

Микроэлектроника занимается разработкой и изготовлением очень малых компонентов электронных цепей для использования в интегральных схемах или, в некоторых случаях, для использования в качестве основных электронных компонентов. Самыми распространенными микроэлектронными компонентами являются полупроводниковые транзисторы, хотя все основные электронные компоненты (резисторы, конденсаторы, индукторы) могут быть созданы на микроскопическом уровне.

Микроэлектронные компоненты создаются химическим изготовлением пластин из полупроводников, например, кремния (при более высоких частотах — полупроводниковых соединений, таких как арсенид галлия, фосфид индия, нитрид галлия), чтобы получить желаемую передачу заряда и управлять током. Микроэлектроника затрагивает существенную часть химии и материаловедения, и требует от инженера-электроника, работающего в данной области, хороших практических знаний квантовой механики.

Ссылка на основную публикацию
Adblock detector