Электромагнитные излучения в порядке убывания длин волн

Электромагнитные излучения в порядке убывания длин волн

Спектр электромагнитных волн – это весь диапазон частот или длин вол электромагнитного поля, которое существует в природе. Этот спектр достаточно широк, поэтому его, для удобства классификации и работы с ним, разделяют на несколько диапазонов.

Все диапазоны электромагнитных вол по мере возрастания их частоты или длины волны располагают на так называемой «шкале электромагнитных волн». На этой шкале размещены (в порядке возрастания частоты) следующие диапазоны:

  1. Низкочастотные электромагнитные волны (от нескольких Гц до 100 кГц).
  2. Радиоволны (от 100 кГц до 300 ГГц).
  3. Инфракрасное излучение (от 300 ГГц до 400 тыс. ГГц).
  4. Видимый свет (от 400 до 800 тыс. ГГц).
  5. Ультрафиолетовое излучение (от 800 тыс. ГГц до 30 млн. ГГц).
  6. Рентгеновское излучение.
  7. Гамма излучение.

Рассмотрим более подробно каждый из этих диапазонов.

Низкочастотные электромагнитные волны – это самый низкий диапазон спектра. Именно в этом диапазоне работает большинство электронных приборов. Дело в том, что с низкочастотным диапазоном легче всего работать и им легче всего управлять.

Радиоволны идут следующим диапазоном в спектре. Как мы знаем, с помощью радиоволн работают практически все беспроводные системы и устройства для передачи информации. В свою очередь радиоволны разделяются на несколько поддиапазонов: длинные, средние, короткие, ультракороткие и сверхвысокочастотные (СВЧ).

Инфракрасное излучение, видимый свет и ультрафиолетовое излучение входят в так называемый «оптический диапазон» или оптический спектр. Этот диапазон находится в промежутке частот между 3·10 11 до 3·10 16 Гц. Оптический спектр также широко используется в системах передачи информации, но кроме этого еще и в системах отображения визуальной информации: дисплеях, мониторах, информационных табло и т.д.

Рентгеновское излучение возникает в результате различных процессов, возникающих в электронной оболочке атомов различных веществ. Например, при резком торможении быстрых заряженных частиц: электронов, протонов и других. Используется в основном в медицине.

Гамма излучение, также как и рентгеновское генерируется внутри ядер, правда не в результате торможения частиц, а в процессе реакции их деления. Используется, а точнее является следствием использования радиоактивных материалов в энергетике.

Расположите виды электромагнитных волн, излучаемых Солнцем, в порядке возрастания их частоты. Запишите в ответе соответствующую последовательность цифр.

1) рентгеновское излучение

2) инфракрасное излучение

3) видимое излучение

Расположите виды электромагнитных волн, излучаемых Солнцем, в порядке возрастания их частоты. Запишите в ответе соответствующую последовательность цифр.

3) гамма излучение

Рас­по­ло­жи­те виды элек­тро­маг­нит­ных волн, из­лу­ча­е­мых Солн­цем, в по­ряд­ке воз­рас­та­ния их ча­сто­ты. За­пи­ши­те в от­ве­те со­от­вет­ству­ю­щую по­сле­до­ва­тель­ность цифр.

3) ин­фра­крас­ное из­лу­че­ние

Рас­по­ло­жи­те виды элек­тро­маг­нит­ных волн, из­лу­ча­е­мых Солн­цем, в по­ряд­ке уменьшения их ча­сто­ты. За­пи­ши­те в от­ве­те со­от­вет­ству­ю­щую по­сле­до­ва­тель­ность цифр.

1) рентгеновское излучение

3) ин­фра­крас­ное из­лу­че­ние

Рас­по­ло­жи­те виды элек­тро­маг­нит­ных волн, из­лу­ча­е­мых Солн­цем, в по­ряд­ке увеличения энергии фотонов. За­пи­ши­те в от­ве­те со­от­вет­ству­ю­щую по­сле­до­ва­тель­ность цифр.

1) рент­ге­нов­ское из­лу­че­ние

3) ультрафиолетовое излучение

Рас­по­ло­жи­те виды элек­тро­маг­нит­ных волн, из­лу­ча­е­мых Солн­цем, в по­ряд­ке уменьшения энер­гии фо­то­нов. За­пи­ши­те в от­ве­те со­от­вет­ству­ю­щую по­сле­до­ва­тель­ность цифр.

1) рент­ге­нов­ское из­лу­че­ние

3) уль­тра­фи­о­ле­то­вое из­лу­че­ние

Рас­по­ло­жи­те виды элек­тро­маг­нит­ных волн, из­лу­ча­е­мых Солн­цем, в по­ряд­ке уве­ли­че­ния энер­гии фо­то­нов. За­пи­ши­те в от­ве­те со­от­вет­ству­ю­щую по­сле­до­ва­тель­ность цифр.

1) микроволновое излучение

Рас­по­ло­жи­те виды элек­тро­маг­нит­ных волн, из­лу­ча­е­мых Солн­цем, в по­ряд­ке уменьшения энер­гии фо­то­нов. За­пи­ши­те в от­ве­те со­от­вет­ству­ю­щую по­сле­до­ва­тель­ность цифр.

1) мик­ро­вол­но­вое из­лу­че­ние

Рас­по­ло­жи­те виды электромагнитных волн видимого света, из­лу­ча­е­мых Солн­цем, в по­ряд­ке умень­ше­ния длины волны. За­пи­ши­те в от­ве­те со­от­вет­ству­ю­щую по­сле­до­ва­тель­ность цифр.

Рас­по­ло­жи­те виды элек­тро­маг­нит­ных волн ви­ди­мо­го света, из­лу­ча­е­мых Солн­цем, в по­ряд­ке увеличения длины волны. За­пи­ши­те в от­ве­те со­от­вет­ству­ю­щую по­сле­до­ва­тель­ность цифр.

Инфракрасное излучение — это один из видов электромагнитного излучения, с диапазоном длин волн от 0,74 мкм до 1−2 мм. Выберите из предложенного списка три правильных утверждения, относящиеся к инфракрасному излучению, и запишите соответствующие цифры.

1) Оказывает физиологическое воздействие на сетчатку человеческого глаза.

2) Излучают лампы накаливания, Солнце.

3) Активизирует синтез витамина D в организме, вызывает загар.

4) Излучение молекул и атомов при тепловых и электрических воздействиях.

5) Используется в медицине из-за высокой проникающей способности.

6) Применяется в приборах ночного видения.

При переходе видимого света из одной прозрачной среды в другую не изменяются следующие характеристики:

2) цвет излучения;

4) частота волны;

5) скорость распространения излучения;

6) направление распространения излучения.

Выберите три правильных ответа и запишите соответствующие цифры в порядке возрастания.

Читайте также:  Все о вагонке деревянной

Рентгеновское излучение — это один из видов электромагнитного излучения, с диапазоном длин волн от 10 -12 − 10 -8 м. Выберите из предложенного списка три правильных утверждения, относящиеся к рентгеновскому излучению, и запишите соответствующие цифры в порядке возрастания..

1) Применяется в дефектоскопии для обнаружения дефектов, полостей внутри различных тел.

2) Излучают лампы накаливания, свечи.

3) Активизирует синтез витамина D в организме, вызывает загар.

4) Излучение молекул и атомов при тепловых и электрических воздействиях.

5) Используется в медицине для диагностики заболеваний внутренних органов.

6) Обладает большой проникающей способностью.

Ультрафиолетовое излучение — это один из видов электромагнитного излучения, с диапазоном длин волн 10−380 нм.

1) Не оказывает физиологического воздействия на сетчатку человеческого глаза.

2) Излучается Солнцем, сильно нагретыми телами, светящимися парами ртути.

3) Активизирует синтез витамина D в организме, вызывает загар.

4) Это излучение молекул и атомов при тепловых и электрических воздействиях.

5) Используется в медицине, косметологии, оказывает бактерицидное действие.

6) Применяется в приборах ночного видения.

Выберите из предложенного списка три правильных утверждения, относящиеся к ультрафиолетовому излучению, и запишите соответствующие цифры.

При переходе видимого света из одной прозрачной среды в другую изменяются следующие характеристики излучения:

2) цвет излучения;

4) частота волны;

5) скорость распространения излучения;

6) направление распространения излучения.

Выберите три правильных ответа и запишите соответствующие цифры в порядке возрастания.

Видимое излучение — это один из видов электромагнитного излучения, с диапазоном длин волн 8 · 10 −7 − 4 · 10 −7 м.

1) Оказывает физиологическое воздействие на сетчатку человеческого глаза.

2) Излучается Солнцем, сильно нагретыми телами, свечами, лампами дневного света.

3) Испускается отдельными насекомыми, глубоководными рыбами, растениями, некоторыми химическими элементами.

4) Излучение молекул и атомов при тепловых и электрических воздействиях.

5) Используется в медицине, косметологии, оказывает бактерицидное действие.

6) Применяется в приборах ночного видения.

Выберите из предложенного списка три правильных утверждения, относящиеся к видимому излучению, и запишите соответствующие цифры.

После появления уравнений Максвелла стало ясно, что они предсказывают существование неизвестного науке природного явления — поперечных электромагнитных волн, представляющих собой распространяющиеся в пространстве со скоростью света колебания взаимосвязанных электрического и магнитного поля. Сам Джеймс Кларк Максвелл первым и указал научному сообществу на это следствие из выведенной им системы уравнений. В этом преломлении скорость распространения электромагнитных волн в вакууме оказалась столь важной и фундаментальной вселенской константой, что ее обозначили отдельной буквой с в отличие от всех прочих скоростей, которые принято обозначать буквой v.

Сделав это открытие, Максвелл сразу же определил, что видимый свет является «всего лишь» разновидностью электромагнитных волн. К тому времени были известны длины световых волн видимой части спектра — от 400 нм (фиолетовые лучи) до 800 нм (красные лучи). (Нанометр — единица длины, равная одной миллиардной метра, которая в основном используется в атомной физике и физике лучей; 1 нм = 10 –9 м.) Всем цветам радуги соответствуют различные длины волн, лежащие в этих весьма узких пределах. Однако в уравнениях Максвелла не содержалось никаких ограничений на возможный диапазон длин электромагнитных волн. Когда стало ясно, что должны существовать электромагнитные волны самой разной длины, фактически сразу же было выдвинуто сравнение по поводу того, что человеческий глаз различает столь узкую полосу их длин и частот: человека уподобили слушателю симфонического концерта, слух которого способен улавливать только скрипичную партию, не различая всех остальных звуков.

Вскоре после предсказания Максвеллом существования электромагнитных волн других диапазонов спектра последовала серия открытий, подтвердивших его правоту. Первыми в 1888 году были открыты радиоволны — сделал это немецкий физик Генрих Герц (Heinrich Hertz, 1857–1894). Единственная разница между радиоволнами и светом состоит в том, что длина радиоволн может колебаться в диапазоне от нескольких дециметров до тысяч километров. Согласно теории Максвелла, причиной возникновения электромагнитных волн является ускоренное движение электрических зарядов. Колебания электронов под воздействием переменного электрического напряжения в антенне радиопередатчика создают электромагнитные волны, распространяющиеся в земной атмосфере. Все другие типы электромагнитных волн также возникают в результате различных видов ускоренного движения электрических зарядов.

Подобно световым волнам, радиоволны могут практически без потерь распространяться на большие расстояния в земной атмосфере, и это делает их полезнейшими носителями закодированной информации. Уже в начале 1894 года — всего через пять с небольшим лет после открытия радиоволн — итальянский инженер-физик Гульельмо Маркони (Guglielmo Marconi, 1874–1937) сконструировал первый работающий беспроволочный телеграф — прообраз современного радио, — за что в 1909 году был удостоен Нобелевской премии.

Читайте также:  Какой иглой шить джинсы на машинке

После того как было впервые экспериментально подтверждено предсказываемое уравнениями Максвелла существование электромагнитных волн за пределами видимого спектра, остальные ниши спектра заполнились весьма быстро. Сегодня открыты электромагнитные волны всех без исключения диапазонов, и практически все они находят широкое и полезное применение в науке и технике. Частоты волн и энергии соответствующих им квантов электромагнитного излучения (см. Постоянная Планка) возрастают с уменьшением длины волны. Совокупность всех электромагнитных волн образует так называемый сплошной спектр электромагнитного излучения. Он подразделяется на следующие диапазоны (в порядке увеличения частоты и уменьшения длины волн):

Радиоволны

Как уже отмечалось, радиоволны могут значительно различаться по длине — от нескольких сантиметров до сотен и даже тысяч километров, что сопоставимо с радиусом Земного шара (около 6400 км). Волны всех радиодиапазонов широко используются в технике — дециметровые и ультракороткие метровые волны применяются для телевещания и радиовещания в диапазоне ультракоротких волн с частотной модуляцией (УКВ/FM), обеспечивая высокое качество приема сигнала в пределах зоны прямого распространения волн. Радиоволны метрового и километрового диапазона применяются для радиовещания и радиосвязи на больших расстояниях с использованием амплитудной модуляции (АМ), которая, хотя и в ущерб качеству сигнала, обеспечивает его передачу на сколь угодно большие расстояния в пределах Земли благодаря отражению волн от ионосферы планеты. Впрочем, сегодня этот вид связи отходит в прошлое благодаря развитию спутниковой связи. Волны дециметрового диапазона не могут огибать земной горизонт подобно метровым волнам, что ограничивает зону приема областью прямого распространения, которая, в зависимости от высоты антенны и мощности передатчика, составляет от нескольких до нескольких десятков километров. И тут на помощь приходят спутниковые ретрансляторы, берущие на себя ту роль отражателей радиоволн, которую в отношении метровых волн играет ионосфера.

Микроволны

Микроволны и радиоволны диапазона сверхвысоких частот (СВЧ) имеют длину от 300 мм до 1 мм. Сантиметровые волны, подобно дециметровым и метровым радиоволнам, практически не поглощаются атмосферой и поэтому широко используются в спутниковой и сотовой связи и других телекоммуникационных системах. Размер типовой спутниковой тарелки как раз равен нескольким длинам таких волн.

Более короткие СВЧ-волны также находят множество применений в промышленности и в быту. Достаточно упомянуть про микроволновые печи, которыми сегодня оснащены и промышленные хлебопекарни, и домашние кухни. Действие микроволновой печи основано на быстром вращении электронов в устройстве, которое называется клистрон. В результате электроны излучают электромагнитные СВЧ-волны определенной частоты, при которой они легко поглощаются молекулами воды. Когда вы помещаете еду в микроволновую печь, молекулы воды, содержащиеся в еде, поглощают энергию микроволн, движутся быстрее и таким образом разогревают еду. Иными словами, в отличие от обычной духовки или печи, где еда разогревается снаружи, микроволновая печь разогревает ее изнутри.

Инфракрасные лучи

Эта часть электромагнитного спектра включает излучение с длиной волны от 1 миллиметра до восьми тысяч атомных диаметров (около 800 нм). Лучи этой части спектра человек ощущает непосредственно кожей — как тепло. Если вы протягиваете руку в направлении огня или раскаленного предмета и чувствуете жар, исходящий от него, вы воспринимаете как жар именно инфракрасное излучение. У некоторых животных (например, у норных гадюк) есть даже органы чувств, позволяющие им определять местонахождение теплокровной жертвы по инфракрасному излучению ее тела.

Поскольку большинство объектов на поверхности Земли излучает энергию в инфракрасном диапазоне волн, детекторы инфракрасного излучения играют немаловажную роль в современных технологиях обнаружения. Инфракрасные окуляры приборов ночного видения позволяют людям «видеть в темноте», и с их помощью можно обнаружить не только людей, но и технику, и сооружения, нагревшиеся за день и отдающие ночью свое тепло в окружающую среду в виде инфракрасных лучей. Детекторы инфракрасных лучей широко используются спасательными службами, например для обнаружения живых людей под завалами после землетрясений или иных стихийных бедствий и техногенных катастроф.

Видимый свет

Как уже говорилось, длины электромагнитных волн видимого светового диапазона колеблются в пределах от восьми до четырех тысяч атомных диаметров (800–400 нм). Человеческий глаз представляет собой идеальный инструмент для регистрации и анализа электромагнитных волн этого диапазона. Это обусловлено двумя причинами. Во-первых, как отмечалось, волны видимой части спектра практически беспрепятственно распространяются в прозрачной для них атмосфере. Во-вторых, температура поверхности Солнца (около 5000°С) такова, что пик энергии солнечных лучей приходится именно на видимую часть спектра. Таким образом, наш главный источник энергии излучает огромное количество энергии именно в видимом световом диапазоне, а окружающая нас среда в значительной мере прозрачна для этого излучения. Неудивительно поэтому, что человеческий глаз в процессе эволюции сформировался таким образом, чтобы улавливать и распознавать именно эту часть спектра электромагнитных волн.

Читайте также:  Сварка труб пнд технология

Хочу еще раз подчеркнуть, что ничего особенного с физической точки зрения в диапазоне видимых электромагнитных лучей нет. Он представляет собой всего лишь узкую полоску в широком спектре излучаемых волн (см. рисунок). Для нас он столь важен лишь постольку, поскольку человеческий мозг оснащен инструментом для выявления и анализа электромагнитных волн именно этой части спектра.

Ультрафиолетовые лучи

К ультрафиолетовым лучам относят электромагнитное излучение с длиной волны от нескольких тысяч до нескольких атомных диаметров (400–10 нм). В этой части спектра излучение начинает оказывать влияние на жизнедеятельность живых организмов. Мягкие ультрафиолетовые лучи в солнечном спектре (с длинами волн, приближающимися к видимой части спектра), например, вызывают в умеренных дозах загар, а в избыточных — тяжелые ожоги. Жесткий (коротковолновой) ультрафиолет губителен для биологических клеток и поэтому используется, в частности, в медицине для стерилизации хирургических инструментов и медицинского оборудования, убивая все микроорганизмы на их поверхности.

Всё живое на Земле защищено от губительного влияния жесткого ультрафиолетового излучения озоновым слоем земной атмосферы, поглощающим большую часть жестких ультрафиолетовых лучей в спектре солнечной радиации (см. Озоновая дыра). Если бы не этот естественный щит, жизнь на Земле едва ли бы вышла на сушу из вод Мирового океана. Однако, несмотря на защитный озоновый слой, какая-то часть жестких ультрафиолетовых лучей достигает поверхности Земли и способна вызвать рак кожи, особенно у людей, от рождения склонных к бледности и плохо загорающих на солнце.

Рентгеновские лучи

Излучение в диапазоне длин волн от нескольких атомных диаметров до нескольких сот диаметров атомного ядра называется рентгеновским. Рентгеновские лучи проникают сквозь мягкие ткани организма и поэтому незаменимы в медицинской диагностике. Как и в случае с радиоволнами временной разрыв между их открытием в 1895 году и началом практического применения, ознаменовавшимся получением в одной из парижских больниц первого рентгеновского снимка, составил считанные годы. (Интересно отметить, что парижские газеты того времени настолько увлеклись идеей, что рентгеновские лучи могут проникать сквозь одежду, что практически ничего не сообщали об уникальных возможностях их применения в медицине.)

Гамма-лучи

Самые короткие по длине волны и самые высокие по частоте и энергии лучи в электромагнитном спектре — это γ-лучи (гамма-лучи). Они состоят из фотонов сверхвысоких энергий и используются сегодня в онкологии для лечения раковых опухолей (а точнее, для умерщвления раковых клеток). Однако их влияние на живые клетки столь губительно, что при этом приходится соблюдать крайнюю осторожность, чтобы не причинить вреда окружающим здоровым тканям и органам.

В заключение важно еще раз подчеркнуть, что, хотя все описанные типы электромагнитного излучения проявляют себя внешне по-разному, по своей сути они являются близнецами. Все электромагнитные волны в любой части спектра представляют собой распространяющиеся в вакууме или среде поперечные колебания электрического и магнитного полей, все они распространяются в вакууме со скоростью света с и отличаются друг от друга лишь длиной волны и, как следствие, энергией, которую они переносят. Остается только добавить, что названные мною границы диапазонов носят достаточно условный характер (и в других книгах вам, вполне вероятно, попадутся несколько иные значения граничных длин волн). В частности, микроволновые излучения с большими длинами волн нередко и справедливо относятся к сверхвысокочастотному диапазону радиоволн. Отсутствуют четкие границы и между жестким ультрафиолетовым и мягким рентгеновским, а также между жестким рентгеновским и мягким гамма-излучением.

Ссылка на основную публикацию
Adblock detector