Частота электромагнитных волн свч печи

Частота электромагнитных волн свч печи

Свойства сверхвысокочастотных волн

В современной жизни сверхвысокочастотные волны используются весьма активно. Взгляните на ваш сотовый телефон – он работает в диапазоне сверхвысокочастотного излучения.

Все технологии, такие как Wi-Fi, беспроводной Wi-Max, 3G, 4G, LTE (Long Term Evolution), радиоинтерфейс малого радиуса действия Bluetooth, системы радиолокации и радионавигации используют сверхвысокочастотные (СВЧ) волны.

СВЧ нашли применение в промышленности и медицине. По-другому СВЧ волны ещё называют микроволнами. Работа бытовой микроволновой печи также основана на применении СВЧ излучения.

Микроволны – это те же самые радиоволны, но длина волны у таких волн составляет от десятков сантиметров до миллиметра. Микроволны занимают промежуточное место между ультракороткими волнами и излучением инфракрасного диапазона. Такое промежуточное положение оказывает влияние и на свойства микроволн. Микроволновое излучение обладает свойствами, как радиоволн, так и световых волн. Например, СВЧ излучению присущи качества видимого света и инфракрасного электромагнитного излучения.


Станция мобильной сети стандарта LTE

Микроволны, длина волны которых составляет сантиметры, при высоких уровнях излучения способны оказывать биологическое воздействие. Кроме этого сантиметровые волны хуже проходят через здания, чем дециметровые.

СВЧ излучение можно концентрировать в узконаправленный луч. Это свойство напрямую сказывается на конструкции приёмных и передающих антенн, работающих в диапазоне СВЧ. Никого не удивит вогнутая параболическая антенна спутникового телевидения, принимающая высокочастотный сигнал, словно вогнутое зеркало, собирающее световые лучи.

Микроволны подобно свету распространяются по прямой и перекрываются твёрдыми объектами, наподобие того, как свет не проходит сквозь непрозрачные тела. Так, если в квартире развернуть локальную Wi-Fi сеть, то в направлении, где радиоволна встретит на своём пути препятствия, вроде перегородок или перекрытий, сигнал сети будет меньше, чем в направлении более свободном от преград.

Излучение от базовых станций сотовой связи GSM довольно сильно ослабляют сосновые леса, так как размеры и длина иголок приблизительно равны половине длины волны, и иголки служат своеобразными приёмными антеннами, тем самым ослабляя электромагнитное поле. Также на ослабление сигнала станций влияют и густые тропические леса. С ростом частоты увеличивается затухание СВЧ–излучения при перекрытии его естественными препятствиями.


Аппаратуру сотовой связи можно обнаружить даже на столбах электроснабжения

Распространение микроволн в свободном пространстве, например, вдоль поверхности земли ограничено горизонтом, в противоположность длинным волнам, которые могут огибать земной шар за счёт отражения в слоях ионосферы.

Данное свойство СВЧ излучения используется в сотовой связи. Область обслуживания делиться на соты, в которых действует базовая станция, работающая на своей частоте. Соседняя базовая станция работает уже на другой частоте, чтобы рядом расположенные станции не создавали помех друг другу. Далее происходит так называемое повторное использование радиочастот.

Поскольку излучение станции перекрывается горизонтом, то на некотором удалении можно установить станцию, работающую на той же частоте. В результате мешать такие станции друг другу не будут. Получается, что экономиться полоса радиочастот, используемая сетью связи.


Антенны базовых станций GSM

Радиочастотный спектр является природным, ограниченным ресурсом, наподобие нефти или газа. Распределением частот в России занимается государственная комиссия по радиочастотам – ГКРЧ. Чтобы получить разрешение на развёртывание сетей беспроводного доступа порой ведутся настоящие "корпоративные войны" между операторами мобильных сетей связи.

Почему микроволновое излучение используется в системах радиосвязи, если оно не обладает такой дальностью распространения, как, например, длинные волны?

Причина в том, что чем выше частота излучения, тем больше информации можно передавать с его помощью. К примеру, многие знают, что оптоволоконный кабель обладает чрезвычайно высокой скоростью передачи информации исчисляемой терабитами в секунду.

Все высокоскоростные телекоммуникационные магистрали используют оптоволокно. В качестве переносчика информации здесь служит свет, частота электромагнитной волны которого несоизмеримо выше, чем у микроволн. Микроволны в свою очередь имеют свойства радиоволн и беспрепятственно распространяются в пространстве. Световой и лазерные лучи сильно рассеиваются в атмосфере и поэтому не могут быть использованы в мобильных системах связи.

У многих дома на кухне есть СВЧ–печь (микроволновка), с помощью которой разогревают пищу. Работа данного устройства основана на поляризационных эффектах микроволнового излучения. Следует отметить, что разогрев объектов, с помощью СВЧ–волн происходит в большей степени изнутри, в отличие от инфракрасного излучения, которое разогревает объект снаружи внутрь. Поэтому нужно понимать, что разогрев в обычной и СВЧ–печи происходит по-разному. Также микроволновое излучение, например, на частоте 2,45 ГГц способно проникать внутрь тела на несколько сантиметров, а производимый нагрев ощущается при плотности мощности в 2050 мВт/см 2 при действии излучения в течение нескольких секунд. Понятно, что мощное СВЧ–излучение может вызывать внутренние ожоги, так как разогрев происходит изнутри.

На частоте работы микроволновки, равной 2,45 Гигагерцам, обычная вода способна максимально поглощать энергию сверхвысокочастотных волн и преобразовывать её в тепло, что, собственно, и происходит в микроволновке.

В то время пока идут неутихающие споры о вреде СВЧ-излучения военные уже имеют возможность проверить на деле так называемую "лучевую пушку". Так в Соединённых штатах разработана установка, которая "стреляет" узконаправленным СВЧ-лучём.

Установка на вид представляет собой что-то вроде параболической антенны, только невогнутой, а плоской. Диаметр антенны довольно большой – это и понятно, ведь необходимо сконцентрировать СВЧ-излучение в узконаправленный луч на большое расстояние. СВЧ-пушка работает на частоте 95 Гигагерц, а её эффективная дальность "стрельбы" составляет около 1 километра. По заявлениям создателей – это не предел. Вся установка базируется на армейском хаммере.

По словам разработчиков, данное устройство не представляет смертельной угрозы и будет применяться для разгона демонстраций. Мощность излучения такова, что при попадании человека в фокус луча, у него возникает сильное жжение кожи. По словам тех, кто попадал под такой луч, кожа будто бы разогревается очень горячим воздухом. При этом возникает естественное желание укрыться, сбежать от такого эффекта.

Действие данного устройства основано на том, что микроволновое излучение частотой 95 ГГц проникает на пол миллиметра в слой кожи и вызывает локальный нагрев за доли секунды. Этого достаточно, чтобы человек, оказавшийся под прицелом, ощутил боль и жжение поверхности кожи. Аналогичный принцип используется и для разогрева пищи в микроволновой печи, только в микроволновке СВЧ-излучение поглощается разогреваемой пищей и практически не выходит за пределы камеры.

На данный момент биологическое воздействие микроволнового излучения до конца не изучено. Поэтому, чтобы не говорили создатели о том, что СВЧ-пушка не вредна для здоровья, она может причинить вред органам и тканям человеческого тела.

Стоит отметить, что СВЧ-излучение наиболее вредно для органов с медленной циркуляцией тепла – это ткани головного мозга и глаз. Ткани мозга не имеют болевых рецепторов, и почувствовать явное воздействие излучения не удастся. Также с трудом вериться, что на разработку "отпугивателя демонстрантов" будут отпускаться немалые деньги – 120 миллионов долларов. Естественно, это военная разработка. Кроме этого нет особых преград, чтобы увеличить мощность высокочастотного излучения пушки до такого уровня, когда его уже можно использовать в качестве поражающего оружия. Также при желании её можно сделать и более компактной.

В планах военных создать летающую версию СВЧ-пушки. Наверняка её установят на какой-нибудь беспилотник и будут управлять им удалённо.

Вред микроволнового излучения

В документах на любой электронный прибор, который способен излучать СВЧ-волны упоминается так называемый SAR. SAR – это удельный коэффициент поглощения электромагнитной энергии. Простым языком – это мощность излучения, которая поглощается живыми тканями тела. Измеряется SAR в ваттах на килограмм. Так вот, для США определён допустимый уровень в 1,6 Вт/кг. Для Европы он чуть больше. Для головы 2 Вт/кг, для остальных частей тела и вовсе 4 Вт/кг. В России действуют более строгие ограничения, а допустимое излучение меряется уже в Вт/см 2 . Норма составляет 10 мкВт/см 2 .

Читайте также:  Елочные шары обвязанные бисером схемы

Несмотря на то, что СВЧ излучение принято считать неионизирующим, стоит отметить, что оно в любом случае оказывает влияние на любые живые организмы. Например, в книге "Мозг в электромагнитных полях" (Ю. А. Холодов) приводятся результаты множества экспериментов, а также тернистая история внедрения норм на облучение электромагнитными полями. Результаты весьма любопытны. Микроволновое излучение влияет на многие процессы, протекающие в живых организмах. Если интересно, почитайте.

Из всего этого следует несколько простых правил. Как можно меньше болтать по мобильному телефону. Держать его подальше от головы и важных частей тела. Не спать со смартфоном в обнимку. По возможности использовать гарнитуру. Держаться подальше от базовых станций сотовой связи (речь идёт о жилых и рабочих помещениях). Не секрет, что антенны подвижной связи ставят на крышах жилых домов.

Также стоит "швырнуть камень в огород" мобильного интернета при использовании смартфона или планшета. Если вы "сидите в интернете", то устройство постоянно передаёт данные базовой станции. Даже если излучение по мощности небольшое (всё зависит от качества связи, помех и удалённости базовой станции), то при длительном использовании негативный эффект обеспечен. Нет, вы не облысеете и не начнёте светиться. В мозгу нет болевых рецепторов. Поэтому он будет устранять "проблемы" по "мере сил и возможностей". Просто будет сложнее сконцентрироваться, усилится усталость и пр. Это как пить яд малыми дозами.

микроволны: миллиметровые (мм), сантиметровые (см), дециметровые (дм)
энергия E — до 0,001 эВ
температура Т — до 2 К
частота ν (ню) — до 200 ГГц = 2 ·10 11 Гц
длина волны λ (лямбда) — от 1 мм

ультракороткие волны (УКВ): дециметровые, метровые
E — до 4 ·10 –6 эВ
Т — до 0,01 К
ν — до 1 ГГц = 10 9 Гц
λ — от 30 см

короткие (КВ), средние (СВ), длинные (ДВ) волны
E — до 1,2 ·10 –8 эВ
Т — до 0,0003 К
ν — до 30 МГц = 3 ·10 7 Гц
λ — от 10 м

сверхдлинные волны (СДВ)
E — до 4 ·10 –10 эВ
Т — до 10 –6 К
ν — до 100 КГц
λ — от 3 км

Диапазон радиоизлучения противоположен гамма-излучению и тоже неограничен с одной стороны — со стороны длинных волн и низких частот.

Инженеры делят его на множество участков. Самые короткие радиоволны используют для беспроводной передачи данных (интернет, сотовая и спутниковая телефония); метровые, дециметровые и ультракороткие волны (УКВ) занимают местные теле- и радиостанции; короткие волны (КВ) служат для глобальной радиосвязи — они отражаются от ионосферы и могут огибать Землю; средние и длинные волны используют для регионального радиовещания. Сверхдлинные волны (СДВ) — от 1 км до тысяч километров — проникают сквозь соленую воду и применяются для связи с подводными лодками, а также для поиска полезных ископаемых.

Энергия радиоволн крайне низка, но они возбуждают слабые колебания электронов в металлической антенне. Эти колебания затем усиливаются и регистрируются.

Атмосфера пропускает радиоволны длиной от 1 мм до 30 м. Они позволяют наблюдать ядра галактик, нейтронные звезды, другие планетные системы, но самое впечатляющее достижение радиоастрономии — рекордно детальные изображения космических источников, разрешение которых превосходит десятитысячную долю угловой секунды.

Микроволны

Микроволны — это поддиапазон радиоизлучения, примыкающий к инфракрасному. Его также называют сверхвысокочастотным (СВЧ) излучением, так как у него самая большая частота в радиодиапазоне.

Микроволновый диапазон интересен астрономам, поскольку в нем регистрируется оставшееся со времен Большого взрыва реликтовое излучение (другое название — микроволновый космический фон). Оно было испущено 13,7 млрд лет назад, когда горячее вещество Вселенной стало прозрачным для собственного теплового излучения. По мере расширения Вселенной реликтовое излучение остыло и сегодня его температура составляет 2,7 К.

Реликтовое излучение приходит на Землю со всех направлений. Сегодня астрофизиков интересуют неоднородности свечения неба в микроволновом диапазоне. По ним определяют, как в ранней Вселенной начинали формироваться скопления галактик, чтобы проверить правильность космологических теорий.

А на Земле микроволны используются для таких прозаических задач, как разогрев завтрака и разговоры по мобильному телефону.

Атмосфера прозрачна для микроволн. Их можно использовать для связи со спутниками. Есть также проекты передачи энергии на расстояние с помощью СВЧ-пучков.

Источники

Крабовидная туманность в радиодиапазоне

Крабовидная туманность — наиболее изученный остаток взрыва сверхновой. На данном изображении показано, как она выглядит в радиодиапазоне.

Радиоизлучение генерируется быстрыми электронами при движении в магнитном поле. Поле заставляет электроны поворачивать, то есть двигаться ускоренно, а при ускоренном движении заряды испускают электромагнитные волны. По этому изображению, которое построено по данным наблюдений американской Национальной радиоастрономической обсерватории (NRAO), можно судить о характере магнитных полей в Крабовидной туманности.

Компьютерная модель распределения вещества во Вселенной

Изначально распределение вещества во Вселенной было почти идеально равномерным. Но все же небольшие (возможно даже квантовые) флуктуации плотности за многие миллионы и миллиарды лет привели к тому, что вещество фрагментировалось.

На рисунке представлен результат компьютерного моделирования эволюции Вселенной. Рассчитывалось движение 10 млрд частиц под действием взаимного тяготения на протяжении 15 млрд лет. В результате сформировалась пористая структура, отдаленно напоминающая губку. Скопления-галактики концентрируются в ее узлах и ребрах, а между ними находятся обширные пустыни, где почти нет объектов, — астрономы называют их войдами (от англ. void — пустота).

Похожие результаты дают наблюдательные обзоры распределения галактик в пространстве. Для сотен тысяч галактик определяются координаты на небе и красные смещения, по которым вычисляются расстояния до галактик.

Правда, достичь хорошего согласия расчетов и наблюдений удается, только если предположить, что видимое (светящееся в электромагнитном спектре) вещество составляет всего около 5% всей массы Вселенной. Остальное приходится на так называемые темную материю и темную энергию, которые проявляют себя только своим тяготением и природа которых пока не установлена. Их изучение — одна из наиболее актуальных задач современной астрофизики.

Квазар: активное ядро галактики

Когда на сверхмассивную черную дыру в центре галактики аккрецирует слишком много вещества, выделяется огромное количество энергии.

Эта энергия разгоняет часть вещества до околосветовых скоростей и выбрасывает его релятивистскими плазменными джетами в двух противоположных направлениях перпендикулярно оси аккреционного диска. Когда эти джеты сталкиваются с межгалактической средой и тормозятся, входящие в них частицы испускают радиоволны.

На радиоизображении квазара красным цветом показаны области высокой интенсивности радиоизлучения: в центре активное ядро галактики, а по бокам от него — два джета. Сама галактика в радиодиапазоне практически не излучает.

Радиогалактика: карта изолиний радиояркости

Для изображения космических объектов в диапазонах излучения, отличных от видимого, используются различные приемы. Чаще всего это искусственные цвета и карты изолиний.

С помощью искусственных цветов можно показать, как выглядел бы объект, если бы светочувствительные рецепторы человеческого глаза были чувствительны не к определенным цветам в видимом диапазоне, а к другим частотам электромагнитного спектра.

Карты изолиний обычно используются для представления изображений, полученных на одной длине волны, что особенно характерно для радиодиапазона. По принципу построения они подобны горизонталям на топографической карте, только вместо точек с фиксированной высотой над горизонтом ими соединяют точки с одинаковой радиояркостью источника на небе.

Читайте также:  Пеларгония toscana angeleyes florella velvet

Приемники

Микроволновый орбитальный зонд WMAP

Космический фон микроволнового излучения, называемый также реликтовым излучением, создает радиошум, который почти одинаков во всех направлениях на небе. И всё же в нем есть очень небольшие вариации интенсивности — около тысячной доли процента. Это следы неоднородностей плотности вещества в молодой Вселенной, которые послужили зародышами для будущих скоплений галактик.

Изучение микроволнового фона было начато наземными радиотелескопами, продолжено советским прибором «Реликт-1» на борту спутника «Прогноз-9» в 1983 г. и американским спутником COBE (Cosmic Background Explorer) в 1989 г., но самую подробную карту распределения микроволнового фона по небесной сфере построил в 2003 г. зонд WMAP (Wilkinson Microwave Anisotropy Probe).

Полученные данные накладывают существенные ограничения на модели образования галактик и эволюции Вселенной.

Система радиотелескопов ALMA (строится)

У радиотелескопа, как и у оптического, разрешение пропорционально диаметру, а чувствительность — площади антенны. Строить подвижные антенны крупнее 100 метров невозможно из-за ограничений по прочности конструкции. Но можно совместно обрабатывать излучение, собранное несколькими небольшими радиотелескопами, как бы синтезируя большое зеркало из маленьких кусочков.

Такая система называется радиоинтерферометром. Строящийся в Чили радиоинтерферометр ALMA будет состоять из 64 12-метровых антенн, размещенных на территории поперечником 15 км. Система будет работать в сантиметровом, миллиметровом и субмиллиметровом диапазонах. Последний доступен благодаря тому, что строительство ведется на высоте более 5 тысяч метров в условиях очень сухого климата.

В радиоастрономии уже давно применяются интерферометры с антеннами, размещенными на разных континентах. В последнее время принцип интерферометра стали использовать и в оптическом диапазоне, например, в системе из четырех 8-метровых телескопов VLT Европейской Южной обсерватории.

Схема радиотелескопа

Радиотелескоп устроен отчасти подобно оптическому телескопу. Он тоже имеет параболическое зеркало, которое собирает радиоволны. Однако из-за большой длины радиоволн в фокусе нельзя получить изображение объекта, поскольку размер пиксела должен быть не меньше длины волны.

Поэтому в фокусе радиотелескопа вместо камеры (как в оптических инструментах) устанавливается единственный радиометр, измеряющий интенсивность собранного излучения. А для получения изображения радиотелескопу приходится линия за линией сканировать выбранный участок неба. Результат обычно представляют картой изолиний радиояркости, хотя может быть построено и обычное полутоновое изображение.

Обзоры неба

Небо в микроволновом диапазоне 1,9 мм (WMAP)

Космический микроволновый фон, называемый также реликтовым излучением, представляет собой остывшее свечение горячей Вселенной. Впервые оно было обнаружено А. Пензиасом и Р. Вильсоном в 1965 году (Нобелевская премия 1978 г.) Первые измерения показали, что излучение совершенно однородно по всему небу.

В 1992 году было объявлено об открытии анизотропии (неоднородности) реликтового излучения. Этот результат был получен советским спутником «Реликт-1» и подтвержден американским спутником COBE (см. Небо в инфракрасном диапазоне). COBE также определил, что спектр реликтового излучения очень близок к чернотельному. За этот результат присуждена Нобелевская премия 2006 года.

Вариации яркости реликтового излучения по небу не превышают одной сотой доли процента, но их наличие указывает на едва заметные неоднородности в распределении вещества, которые существовали на ранней стадии эволюции Вселенной и послужили зародышами галактик и их скоплений.

Однако точности данных COBE и «Реликта» было недостаточно для проверки космологических моделей, и поэтому в 2001 году был запущен новый более точный аппарат WMAP (Wilkinson Microwave Anisotropy Probe), который к 2003 году построил детальную карту распределения интенсивности реликтового излучения по небесной сфере. На основе этих данных сейчас ведется уточнение космологических моделей и представлений об эволюции галактик.

Спектр реликтового излучения

Реликтовое излучение возникло, когда возраст Вселенной составлял около 400 тысяч лет и она вследствие расширения и остывания стала прозрачна для собственного теплового излучения. Первоначально излучение имело планковский (чернотельный) спектр с температурой около 3000 K и приходилось на ближний инфракрасный и видимый диапазоны спектра.

По мере расширения Вселенной реликтовое излучение испытывало красное смещение, что приводило к снижению его температуры. На сегодня температура реликтового излучения составляет 2,7 К и оно приходится на микроволновый и дальний инфракрасный (субмиллиметровый) диапазоны спектра. На графике показан приближенный вид планковского спектра для этой температуры. Впервые спектр реликтового излучения был измерен спутником COBE (см. Небо в инфракрасном диапазоне), за что в 2006 году была присуждена Нобелевская премия.

Радионебо на волне 21 см, 1420 МГц (Dickey & Lockman)

Знаменитая спектральная линия с длиной волны 21,1 см — это еще один способ наблюдения нейтрального атомарного водорода в космосе. Линия возникает благодаря так называемому сверхтонкому расщеплению основного энергетического уровня атома водорода.

Энергия невозбужденного атома водорода зависит от взаимной ориентации спинов протона и электрона. Если они параллельны, энергия чуть выше. Такие атомы могут спонтанно переходить в состояние с антипараллельными спинами, испуская квант радиоизлучения, уносящий крохотный избыток энергии. С отдельным атомом такое случается в среднем раз в 11 млн лет. Но огромное распространение водорода во Вселенной делает возможным наблюдение газовых облаков на этой частоте.

Радионебо на волне 73,5 см, 408 МГц (Бонн)

Это самый длинноволновый из всех обзоров неба. Он был выполнен на волне, на которой в Галактике наблюдается значительное число источников. Кроме того, выбор длины волны определялся техническими причинами. Для построения обзора использовался один из крупнейших в мире полноповоротных радиотелескопов — 100-метровый боннский радиотелескоп.

Земное применение

Микроволновая печь

Главное преимущество микроволновой печи — прогрев со временем продуктов по всему объему, а не только с поверхности.

Микроволновое излучение, имея большую длину волны, глубже инфракрасного проникает под поверхность продуктов. Внутри продуктов электромагнитные колебания возбуждают вращательные уровни молекул воды, движение которых в основном и вызывает нагрев пищи. Таким образом происходит микроволновая (СВЧ) сушка продуктов, размораживание, приготовление и разогрев. Также переменные электрические токи возбуждают токи высокой частоты. Эти токи могут возникать в веществах, где присутствуют подвижные заряженные частицы.

А вот острые и тонкие металлические предметы в микроволновую печь помещать нельзя (это особенно касается посуды с напыленными металлическими украшениями под серебро и золото). Даже тонкое колечко позолоты по краю тарелки может вызвать мощный электрический разряд, который повредит устройство, создающее электромагнитную волну в печи (магнетрон, клистрон).

Сотовый телефон

Принцип действия сотовой телефонии основан на использовании радиоканала (в микроволновом диапазоне) для связи между абонентом и одной из базовых станций. Между базовыми станциями информация передается, как правило, по цифровым кабельным сетям.

Радиус действия базовой станции — размер соты — от нескольких десятков до нескольких тысяч метров. Он зависит от ландшафта и от мощности сигнала, которую подбирают так, чтобы в одной соте было не слишком много активных абонентов.

В стандарте GSM одна базовая станция может обеспечивать не более 8 телефонных разговоров одновременно. На массовых мероприятиях и при стихийных бедствиях количество звонящих абонентов резко увеличивается, это перегружает базовые станции и приводит к перебоям с сотовой связью. На такие случаи у сотовых операторов есть мобильные базовые станции, которые могут быть оперативно доставлены в район большого скопления народа.

Много споров вызывает вопрос о возможном вреде микроволнового излучения сотовых телефонов. Во время разговора передатчик находится в непосредственной близости от головы человека. Многократно проводившиеся исследования пока не смогли достоверно зарегистрировать негативного воздействия радиоизлучения сотовых телефонов на здоровье. Хотя полностью исключить воздействие слабого микроволнового излучения на ткани организма нельзя, оснований для серьезного беспокойства нет.

Читайте также:  Автоматизация производственных процессов на предприятиях

Телевизор

Передача телевизионного изображения ведется на метровых и дециметровых волнах. Каждый кадр разбивается на строки, вдоль которых определенным образом меняется яркость.

Передатчик телевизионной станции постоянно выдает в эфир радиосигнал строго фиксированной частоты, она называется несущей частотой. Под нее подстраивается приемный контур телевизора — в нем на нужной частоте возникает резонанс, позволяющий уловить слабые электромагнитные колебания. Информация об изображении передается амплитудой колебаний: большая амплитуда — высокая яркость, низкая амплитуда — темный участок изображения. Этот принцип называется амплитудной модуляцией. Аналогичным образом передается звук радиостанциями (кроме FM-станций).

С переходом к цифровому телевидению правила кодирования изображения меняются, но сам принцип несущей частоты и ее модуляции сохраняется.

Спутниковая тарелка

Параболическая антенна для приема сигнала с геостационарного спутника в микроволновом и УКВ-диапазонах. Принцип действия такой же, как у радиотелескопа, но тарелку не требуется делать подвижной. В момент монтажа ее направляют на спутник, который всегда остается на одном месте относительно земных сооружений.

Это достигается за счет вывода спутника на геостационарную орбиту высотой около 36 тыс. км над экватором Земли. Период обращения по этой орбите в точности равен периоду вращения Земли вокруг своей оси относительно звезд — 23 часа 56 минут 4 секунды. Размер тарелки зависит от мощности спутникового передатчика и его диаграммы направленности. У каждого спутника есть основной район обслуживания, где его сигналы принимаются тарелкой диаметром 50–100 см, и периферийная зона, где сигнал быстро слабеет и для его приема может потребоваться антенна до 2–3 м.

Микроволны в СВЧ — печах, их природа и свойства.

Для того чтобы понять, вредна ли микроволновая печь, необходимо иметь представление, что же такое микроволны . Для этого обратимся не к слухам, а к научным данным физики, которая объясняет природу и свойства всех физических явлений.

Что такое микроволны и их место в спектре электромагнитных излучений.
Микроволны — это один из видов электромагнитного излучения. А, как известно, электромагнитное излучение Солнца — основной источник энергии для жизни на Земле. Оно состоит из видимого и невидимого излучения.

Все цвета, которые мы видим — это видимая часть излучения. Невидимая — это радиоволны, инфракрасное (тепловое), ультрафиолетовое, рентгеновское и гамма излучение. Все эти волны — проявления одного и того же явления — электромагнитного излучения, а отличаются они длиной волн и частотой колебаний. Чем больше длина волн, тем меньше частота их колебаний. Эти параметры определяют свойства того или иного вида излучений.

Весь спектр электромагнитных волн можно последовательно расположить по мере уменьшения длины волны (а соответственно увеличения частоты колебаний) в следующем порядке:

  1. Радиоволны — электромагнитные волны с длиной волны более 1мм. Они включают: a) Длинные волны — длина волны от 10 км до 1 км (частота 30 кГц — 300 кГц);
    b) Средние волны — длина волны от 1 км до 100 м (частота 300кГц -3МГц);
    c) Короткие волны — длина волны от 100 м до 10 м (частота 3 — 30МГц);
    d) Ультракороткие волны с длиной волны меньше 10 м (частота 30МГц — 300 ГГц). Ультракороткие волны в свою очередь делятся на:
    метровые, сантиметровые (в том числе микроволны ), миллиметровые волны.
    Микроволны — это вид электромагнитной энергии, находящийся в шкале частот между радиоволнами и инфракрасным излучением. Поэтому они обладают некоторыми свойствами своих соседей. Микроволны или волны сверхвысоких частот (СВЧ) — это короткие электромагнитные радиоволны с длиной волны 1 мм — 1 м (частота меньше 300мгц). Сверхвысокочастотным (СВЧ) излучением его называют потому, что он имеет самую большую частоту в радиодиапазоне. Физическая природа излучения микроволн такая же, что и у радиоволн. Они используются для телефонной связи, работы Интернета, передачи телевизионных программ, в микроволновых печах.
  2. Инфракрасное излучение — электромагнитные волны с длиной волны 1 мм — 780 нм (частота 300 ГГц — 429 ТГц). Его ещё называют «тепловое» излучение, так как оно воспринимается кожей человека как ощущение тепла.
  3. Видимое излучение — электромагнитные волны с длиной волны 780-380 нм (частота 429 ТГц — 750 ТГц).
  4. Ультрафиолетовое излучение — электромагнитные волны с длиной волны 380 — 10 нм (частота 7,5•1014 Гц — 3•1016 Гц).
  5. Рентгеновское излучение — электромагнитные волны с длиной волны 10 нм — 5 пм (частота 3•1016 — 6•1019 Гц).
  6. Гамма лучи — электромагнитные волны с длиной волны меньше 5 пм (частота более 6•1019 Гц).

От длины волны и частоты зависит количество энергии, которую она переносит. Волны с большой длиной волны и низкой частотой несут мало энергии. Волны с малой длиной волны и большой частотой — много. Чем большей энергией обладает излучение, тем более губительный эффект оно оказывает на человека.

По способности вызывать такой эффект как ионизация вещества все вышеуказанные виды электромагнитного излучения делятся на 2 категории: ионизирующее и неионизирующее.
Отличаются эти 2 вида излучений количеством энергии, которую они несут.

1. Ионизирующее излучение иначе называют радиоактивным. К нему относятся рентгеновское, гамма-излучение, и в отдельных случаях ультрафиолетовое.
Ионизирующее излучение отличается высокой энергией, способной ионизировать вещества, и вызывает такие изменения в клетках, которые нарушают ход биологических реакций в организме и представляют опасность для здоровья.
Максимальная энергия присуща гамма-излучению. В результате его воздействия пища становится радиоактивной, а у человека развивается лучевая болезнь. Именно поэтому для живого организма очень опасно воздействие всех ионизирующих излучений.

2. Неионизирующее излучение — радиоволны, инфракрасное, видимое излучение.
Эти виды излучения обладают недостаточной энергией для ионизации вещества, поэтому не могут изменить структуру атомов и молекул. Границей между неионизирующим и ионизирующим излучением обычно считают длину волны примерно в 100 нанометров.
Энергии длинных радиоволн недостаточно даже для того, чтобы нагреть что-либо — они просто пройдут насквозь любой пищи. Энергия инфракрасного излучения (тепловая) поглощается всеми предметами, в том числе пищей, поэтому успешно используется, например, в тостерах. Микроволны занимают среднее положение ними и поэтому также обладают невысокой энергией.

Микроволны , использующиеся в СВЧ-печах.
В бытовых микроволновых печах используются микроволны с частотой излучения 2450 МГц (2,45 ГГц) и длиной волны примерно 12 см. Эти показатели значительно ниже частот рентгеновских и гамма-лучей, которые вызывают ионизирующий эффект и опасны для человека. Микроволны располагаются между радио- и инфракрасными волнами, т.е. они обладают недостаточной энергией для ионизации атомов и молекул.
В исправных СВЧ — печах микроволны непосредственно на человека не воздействуют. Они поглощаются пищей, вызывая эффект образования тепла.
Микроволновые печи не создают ионизирующее излучение и не излучают радиоактивные частицы, поэтому не обладают радиоактивным воздействием на живые организмы и продукты питания. Они генерируют радиоволны, которые по всем законам физики не могут изменить атомно-молекулярную структуру вещества, они могут только нагревать его.
Итак, микроволны — это разновидность радиоволн. Находясь в шкале частот между радиоволнами и инфракрасным излучением, они обладают общими с ними свойствами.
Однако, ни тепло, ни радиоволны, которые окружают нас повсюду, никак не влияют на пищу, а, следовательно, нет особых причин ожидать этого и от микроволн.

Ссылка на основную публикацию
Adblock detector